
Batch Mode Deep Active Learning for Regression
on Graph Data

Peter Samoaa
Data Science and AI Division

Chalmers University of technology
Gothenburg, Sweden
samoaa@chalmers.se

Linus Aronsson
Data Science and AI Division

Chalmers University of technology
Gothenburg, Sweden
linaro@chalmers.se

Philipp Leitner
Interaction Design and Software Engineering

Chalmers University of technology
Gothenburg, Sweden

philipp.leitner@chalmers.se

Morteza Haghir Chehreghani
Data Science and AI Division

Chalmers University of technology
Gothenburg, Sweden

morteza.chehreghani@chalmers.se

Abstract—Acquiring labelled data for machine learning tasks,
for example, for software performance prediction, remains a
resource-intensive task. This study extends our previous work
by introducing a batch-mode deep active learning approach
tailored for regression in graph-structured data. Our framework
leverages the source code conversion into Flow Augmented-AST
graphs (FA-AST), subsequently utilizing both supervised and
unsupervised graph embeddings. In contrast to single-instance
querying, the batch-mode paradigm adaptively selects clusters
of unlabeled data for labelling. We deploy an array of base
kernels, kernel transformations, and selection methods, informed
by both Bayesian and non-Bayesian strategies, to enhance the
sample efficiency of neural network regression. Our experimental
evaluation, conducted on multiple real-world software perfor-
mance datasets, demonstrates the efficacy of the batch mode deep
active learning approach in achieving robust performance with
a reduced labelling budget. The methodology scales effectively
to larger datasets and requires minimal alterations to existing
neural network architectures.

Index Terms—Active Learning, Graph Neural Network, Deep
Learning, Kernels.

I. INTRODUCTION

The rapid growth of machine learning (ML) applications
across numerous domains is stifled by the limited availability
of labelled data, including the domain of software engineering.
Despite the abundance of source code files publicly hosted on
platforms like GitHub, the absence of labels for these datasets
remains a significant bottleneck. For tasks like performance
prediction—which aims to forecast the execution time of
software prior to execution—the cost of labelling is both com-
putationally expensive and time-consuming. This conundrum
gives rise to the need for Active Learning (AL) [26] techniques
that efficiently identify the most informative samples for
labelling. Active learning has been extensively investigated
in various domains like text analysis [27], image data [5],
[9], driving scenario trajectories [15], and drug design [28] to
improve data annotation procedures. A particular challenge in
deploying active learning for source code analysis arises from
the representation of source code as graphs, coupled with the

lack of a unified framework suitable for diverse learning tasks,
such as regression.

Numerous studies have explored the use of active learning
in graph-based models, particularly focusing on node classi-
fication tasks via Graph Neural Networks (GNNs) [2], [6],
[17], [30]. These works primarily address active learning at
the node level. Some research extends this by incorporating
reinforcement learning into the active learning framework. For
instance, Hu et al. [13] train a policy network on labeled source
graphs and transferred this policy to unlabeled graphs for node
labeling tasks. Zhang et al. [31], [32] examine batch settings in
active learning, employing multi-agent reinforcement learning
and meta Q-learning to facilitate node labeling for classifi-
cation purposes. Additionally, multi-armed bandit approaches
have also been used for active learning in graph settings [7],
[10]. Despite these advances, the existing literature largely
concentrates on node-level classification tasks. The application
of active learning to graph-level regression tasks remains not
widely explored.

To mitigate this challenge, our recent work [22] proposes
a unified active learning framework tailored for graph repre-
sentations of source code. Our framework employs enhanced
Abstract Syntax Trees (ASTs), which we term FA-ASTs [24].
These FA-ASTs capture a rich tapestry of syntactical, seman-
tic, and lexical source code information and serve as the data
points for our active learning model. Despite the versatility
in accommodating various regression techniques, our existing
framework in [22] falls short in supporting diverse sample
selection across batches. This limitation is critical [16] and
becomes especially acute given the computational demands of
retraining models—particularly neural networks—after each
labelling iteration. Batch Mode Active Learning (BMAL)
offers a solution by allowing the selection of multiple data
points for labelling simultaneously. It is then called atch
Mode Deep Active Learning (BMDAL) when the BMAL
approach is employed with deep learning models for extracting
expressive features [21]. Specifically, we consider pool-based

BMDAL, where the data points for labelling are chosen from
a predefined pool.

Inspired by recent work [11] that employs BMDAL for
regression on tabular data, we aim to extend this framework
to accommodate graph-based source code data. In particular,
to apply BMDAL to graph data, we investigate GNNs and
Graph2Vec for graph learning and fully connected neural
networks for the regression task (i.e., for performance pre-
diction). Regression tasks inherently lack a natural measure
of uncertainty, which is often straightforward in classification
tasks through softmax layers. Computing uncertainties in re-
gression, therefore, becomes less straightforward necessitating
the use of kernel methods. Therefore, we admit a Gaussian
Process (GP) framework [20] in order to investigate and utilize
different notions of uncertainty. We conduct our experiments
on a real-world dataset that we have collected for this study.
Our experimental results indicate that utilising GNN within
the BMDAL framework provides the most effective setting for
active learning querying methods compared to Graph2Vec.

In summary, our contributions are threefold:
1) We extend the BMDAL framework to make it compat-

ible with graph data.
2) To the best of our knowledge, we are the first to

adapt BMDAL for graph representations of source code
specifically for regression tasks.

3) We validate our approach using real-world datasets.
4) By addressing these gaps, we offer a novel approach to

the problem of active learning in source code analysis,
thereby contributing to more efficient labelling and,
ultimately, broader application of machine learning in
software engineering.

The code and data are publicly available at [1].

II. SOURCE CODE REPRESENTATION

Listing 1: Simple example of Java source code
p u b l i c s t a t i c i n t f a c t o r i a l (i n t n) {

i f (n <= 1) {
re turn 1 ;

} e l s e {
re turn n * f a c t o r i a l (n − 1) ;

}
}

This study aims to bring the power of ML to software
engineering by enhancing performance prediction models. For
that, understanding how source code can be effectively repre-
sented is crucial. As we detailed in our previous systematic
literature review [23], program source code can be converted
into various forms, ranging from tree-based and graph-based
to token-based representations.

In this paper, we use a Java method calculating the fac-
torial of a number as a concrete example for source code
representation, specifically focusing on the Abstract Syntax
Tree (AST), Data Flow Graph (DFG), and Control Flow Graph
(CFG). These different representations serve unique purposes
and offer different types of information about the code.

public

MethodDeclaration

static
MethodBody

Access Modifier BlockStatement

Identifier Identifier IfStatement ElseStatement ReturnStatement

factorial int Condition BlockStatement Expression

Parameter ReturnType BinaryExpr Return * MethodCall

Identifier int Identifier Literal

n int n <= 1

Identifier Literal Identifier

n * factorial(n-1)

Fig. 1: Simplified abstract syntax tree (AST) for the code
snippet in Listing 1

n if (n <= 1)

return 1

True

n * factorial(n - 1)

False

n factorial(n - 1)

(a) Data flow graph (DFG)

Entry

if (n <= 1)

return 1

Exit

return n * factorial(n - 1)

True False

(b) Control flow graph
(CFG)

Fig. 2: Flow graphs representation for the code snippet in
Listing 1

A. Abstract Syntax Tree (AST)

The AST representation is of particular interest due to
the rich syntactical and lexical details it offers without the
need for executing the code. An AST for our Java method is
illustrated in Figure 1, where the tree structure provides an
overview of the program’s syntactic composition, including
decision-making constructs like ‘if‘ statements and expressions
involving function calls and arithmetic operations. The AST
is particularly beneficial for capturing the structural aspects
of the code, which makes it well-suited for graph neural
networks requiring many nodes and edges for meaningful
feature extraction.

B. Data Flow Graph (DFG)

While the AST gives us valuable insights into the syntactic
structure of the code, it does not capture how data moves or
interacts within the program. This is where Data Flow Graphs
(DFG) come into play. As demonstrated in Figure 2a, a DFG
shows the flow of data between variables and computations,
capturing the dependencies between different parts of the code.

C. Control Flow Graph (CFG)

To understand the runtime behaviour and possible paths
that can be traversed during the code execution, Control Flow
Graphs (CFG) are indispensable. Our Java method’s CFG,
shown in Figure 2b, presents a high-level overview of all

Code to
Graph

Graph
Representation

Learning
BMDAL

Update data based on queries

Fig. 3: BMDAL framework for graph data

possible routes the execution could take, from the initial
method call to the return statements.

In summary, the combination of these source code repre-
sentations enables us to comprehensively analyze and model
the behaviour, structure, and data flow within a software
system, which is particularly useful for ML-driven software
engineering research.

III. ACTIVE LEARNING APPROACH

In this section, we outline the key components of our
active learning framework. The process begins by converting
source code into graph representations. These graphs are then
embedded through unsupervised techniques or supervised.
For supervised embeddings, we employ GNN in conjunction
with active learning. This involves iteratively training the
GNN based on newly added batches from the active learning
process. During the active learning phase, we explore various
selection methods, as well as kernels and their associated
transformations.

A. Source Code to Graph

This section describes the methodology for constructing
graphs from the source code, specifically Java files, as illus-
trated in Figure 4.

1) AST Parsing: We initially transform the source code
into an AST as an intermediate representation. The AST
representation can be extracted through source code parsing
alone, without the need for executing the program. We use the
pure Python Java parser javalang1 to parse each test file and
use the node types, values, and production rules in javalang
to describe our ASTs. To encapsulate both semantic elements
and syntactical attributes, we enhance the AST by integrating
edges that capture data and control flow. This results in a
Flow-Augmented AST (FA-AST) graph, a concept that was
pioneered in our prior research [24].

The impetus for enriching the AST originates from con-
temporary research [23], underscoring the necessity for com-
prehensive code representations in applying deep learning
techniques to software engineering. Given the intricate nature
of performance prediction tasks, relying solely on the syntactic
information derived from basic AST falls short of delivering
high-fidelity outcomes. Therefore, we augment the tree-like
architecture of the AST with additional semantic layers that
signify both data and control flow, evolving it into a more
elaborate graph. This enriched graph representation encodes a

1https://pypi.org/project/javalang/

broader set of information than what is offered by the source
code structure alone.

AST Parser AST
Parse

FA-AST

Adding
Edges

Fig. 4: Source Code to Graph Process

2) Capturing Ordering and Data Flow: To understand how
the graphs are built, we will present each augmentation and
then explain in detail how the FA-AST is built. We augment
AST with different types of additional edges representing
data flow and node order in the AST. Specifically, we use
the following additional flow augmentation edges, in addition
to the AST child and AST parent edges that are produced
readily by AST parsing:
FA Next Token (b):
This type of edge connects a terminal node (leaf) in the AST
to the next terminal node. Terminal nodes are nodes without
children. In Figure 1, an FA Next Token edge would be added,
for example, between n and int(the first leaves at the left
bottom).

FA Next Sibling (c):
This connects each node (both terminal and non-terminal) to
its next sibling and allows us to model the order of instructions
in an otherwise unordered graph. In Figure 1, such an edge
would be added, for example, connecting the public and
with the static and static with MethodBody node.

FA Next Use (d):
This type of edge connects a node representing a variable to
the place where this variable is next used. For example, the
variable n is declared in the first line in Listing 1, and then
used next in Lines 2 and 5.

3) Capturing Control Flow: In a second augmentation step,
we now add further edges representing the control flow in the
test cases. We currently support if statements, while and for
loops, as well as sequential execution. We currently do not
support switch statements or do-while loops, as these are less
common. Java source code containing these elements will still
be parsed successfully, but the FA-AST will not capture these
control flow constructs. Specifically, the following further
edges are added (see also Figure 5):

FA If Flow (e):
This type of edge connects the predicate (condition) of the if-
statement with the code block that is executed if the condition
evaluates to true. Every if-statement contains exactly one
such edge by construction.

FA Else Flow (f):
Conversely, this edge type connects the predicate to the
(optional) else code block.

FA While Flow (g):
A while loop essentially entails two elements - a condition
and a code block that is executed as long as the condition
remains true. We capture this through a FA While Flow (g)
edge connecting the condition to the code block, and an FA

IF

PRED IF-BLOCK ELSE-
BLOCK(e)

(f)

AST edge
(e) FA If Flow
(f) FA Else Flow

WHILE

COND BLOCK
(g)

AST edge
(g) FA While Flow
(d) FA Next Use

(d)

FOR

COND BLOCK
(h)

AST edge
(h) FA For Flow
(d) FA Next Use

(d)

BLOCK

CALL CALL
(i)

AST edge
(i) FA Next Statement Flow

CALL
(i)

Figure 4.1 - if Figure 4.2 - while

Figure 4.3 - for Figure 4.4 - block

Fig. 5: Additional flow augmentations for different control
flow constructs

Next Use (d) edge in the reverse direction. The latter is used
to model the next usage of a loop counter.

FA For Flow (h):
For loops are conceptually similar to while loops. We use FA
For Flow (h) edges to connect the condition to the code block,
and an FA Next Use (d) edge in the reverse direction. Similar
to the modelling of while-loops, FA Next Use (d) relates to
the usage (typically incrementing) of a loop counter.

FA Next Statement Flow (i):
In addition to the control flow constructs discussed so far,
Java of course also supports the simple sequential execution
of multiple statements in a sequence within a code block. FA
Next Statement Flow edges (i) are used to represent this case.
Different from the constructs discussed so far, a code block
can contain an arbitrary number of children, and the FA Next
Statement Flow edge is always used to connect each statement
to the one directly following it.

B. Graph Representation Learning

The graph structure of the data items in G restricts the types
of regression models that can be used, and thus, the types of
query strategies to be employed for active learning. Therefore,
we construct embeddings that can be used to project the graph
data into a latent space where any regression model (and thus
query strategy) can be utilized.

Since we focus on directed graphs, we use embedding algo-
rithms compatible with directed graphs where the adjacency
matrix is not symmetric. For this purpose, we explore three
main approaches: unsupervised embeddings based on shallow
embedding methods and supervised embeddings (based on
GNNs). Each of these categories is listed and explained below.

1) Unsupervised Embedding: In our previous study [22],
we investigate a number of shallow graph embeddings based
on matrix factorization or skip-gram-based embeddings. The
obtained results (Table 3 and Table 5 in [22]) show that
Graph2Vec [18] achieves the best results for graph-level em-
bedding across all unsupervised graph embeddings. Thus, in
this paper, we use Graph2Vec as the unsupervised embedding.

Algorithm 1 Pool-based BMDAL loop in unsupervised setting

Require: Graphs G, BMDAL algorithm NEXTBATCH (see
Algorithm 3), list Lbatch of batch sizes

1: X = Graph2Vec(G)
2: Split X into Xtrain, Xpool, Xtest
3: for AL batch size Nbatch in Lbatch do
4: Train NN model fθ on Xtrain
5: Evaluate NN model fθ on Xtest
6: Xbatch ← NEXTBATCH(fθ,Xtrain,Xpool,Nbatch)
7: Move Xbatch from Xpool to Xtrain and acquire labels Ybatch

for Xbatch
8: end for
9: Train final model fθ on Xtrain

10: Evaluate final model fθ on Xtest

2) Supervised Embedding: Similar to unsupervised settings
we select the most accurate GNN model out of the state-
of-the-art architectures (namely GCNConv, GraphSAGE, and
GraphConv) that were used in our previous study. Thus, in our
experiments, we use GraphConv [8] since it yields the most
accurate results for our graph data.

C. Batch Mode Deep Active Learning

In this section, we will discuss how we use different selec-
tion methods and how kernels and kernel transformations are
incorporated with the selection methods and neural networks.
When constructing query strategies for the BMDAL frame-
work, The following three criteria are generally considered
for selecting batches [29]:

• Informativeness: The selection method should select sam-
ples where the model is mostly uncertain about the label.

• Diversity: The selection methods must ensure that the
samples in the batch must be diverse and different from
each other.

• Representative: The selection of the training set should
be concentrated on the region where the pool data distri-
bution has high density.

Algorithm 1 illustrates the general procedure for pool-based
BMDAL utilizing unsupervised graph embedding. Initially,
we derive the embeddings for the complete graph set G
using Graph2Vec. The embeddings X are then partitioned into
training Xtrain, testing Xtest, and pooling Xpool subsets. Note
that the test lables are never used in training or querying
for active learning. Within the BMDAL loop, the neural
network (NN) model is first trained on the initially labelled
embeddings Xtrain and subsequently evaluated on Xtest. Next,
a batch Xbatch ⊂ Xpool is selected using the NEXTBATCH
method, which forms the core of BMDAL. The labeled set
is updated by transferring the selected batch Xbatch from Xpool
to Xtrain and acquiring the labels Ybatch for it. The NN model
is then retrained on the extended Xtrain and re-evaluated on
Xtest. Finally, the model is trained on the complete Xtrain and
evaluated on Xtest.

Algorithm 2 illustrates the general steps for pool-based
BMDAL in supervised setting. The process is slightly different

Algorithm 2 Pool-based BMDAL loop in supervised setting

Require: Graph Data G, initial labeled graphs training set
Gtrain, unlabeled graphs pool set Gpool, test set Gtest,
BMDAL algorithm NEXTBATCH (see Algorithm 3), list
Lbatch of batch sizes

1: for AL batch size Nbatch in Lbatch do
2: GNN = GraphConv (Gtrain) {training the GNN model}
3: X = GNN.embedding(G)
4: Extract Xtrain,Xtest,Xpool from the embedding set X

based on the indices of Gtrain, Gtest, Gpool,
5: Train NN model fθ on Xtrain
6: Evaluate NN model fθ on Xtest
7: Xbatch ← NEXTBATCH(fθ,Xtrain,Xpool,Nbatch)
8: Move Xbatch from Xpool to Xtrain and acquire labels Ybatch

for Xbatch
9: Update Gtrain

10: end for
11: Train final model fθ on Xtrain
12: Evaluate final model fθ on Xtest

since the GNN model is incorporated into the active learning
process because Xtrain is updated in each iteration in order
to utilize the recently labelled data. Here, we first define the
indices of training, test, and pool sets in advance. Then, in
the active learning loop, we initially train the GNN model
in order to obtain an initial embedding. Then, based on this
embedding, we train the NN model and evaluate it on Xtest.
Then, we select Xbatch by NEXTBATCH. Next, we update the
labelled set by moving the selected batch Xbatch from Xpool to
Xtrain and acquire the labels Ybatch for Xbatch. Thus, Xtrain

is then extended, and we train the GNN again based on the
extended training graph set to obtain a new embedding. The
NN is then trained again on the extended embeddings set and
so on. At the end of iteration, we train the final model on the
full Xtrain and evaluate it on Xtest.

Algorithm 3 Kernel-based batch construction framework

1: function NEXTBATCH(fθ,Xtrain, Xpool, Nbatch)
2: k ← BaseKernel(fθ)
3: k ← TransformKernel(k,Xtrain)
4: return SELECT(k,Xtrain, Xpool, Nbatch)
5: end function

Kernels and Kernel Transformation in BMDAL: The
usage of kernels and related transformations is inspired by
the study in [11]. The authors formulate the use of kernels
and kernel transformations within a general framework for
BMDAL for tabular regression data.

The kernel-based batch construction framework outlined in
Algorithm 3 serves as a fundamental component in Algo-
rithms 1 and 2. This framework enables the manipulation of
kernels and kernel transformations, fulfilling key functionali-
ties.

A primary motivation for employing kernels in this frame-
work is to emphasize informativeness as a crucial criterion

for assessing the efficiency of selection methods. This is
particularly vital for tasks involving uncertainty quantifica-
tion. Whereas softmax layers commonly serve to measure
uncertainty in classification, such methods are not directly
applicable to regression tasks. In regression that yields scalar
outputs—such as execution time in our case study—a straight-
forward uncertainty quantification mechanism is absent. This
gap is bridged by using Gaussian Process (GP), a Bayesian
technique that computes uncertainties via kernel methods.

In Gaussian Process, the selected kernel plays a critical
role in determining the quality of the uncertainty estimates.
In the context of Neural Networks, the base kernel (computed
in line 2 of Algorithm 3) is used to approximate the NN by
capturing similarities between data points in the feature space,
which is obtained post-training. Kernels can be transformed
to either enhance computational efficiency or better represent
the relations between data points. The purpose of the kernel
transformations (as introduced in [11]) is to formulate many
existing BMDAL methods under one common framework.

After transforming the kernel, a selection method (SELECT)
is invoked. This method utilizes the transformed kernel to
guide the selection process, as detailed in Algorithm 4.

In our experiments, we use the neural tangent kernel
(NTK) [14] as the base kernel. We use this kernel because
it mimics the neural network and performs the best overall
when used in conjunction with different selection methods
according to the experiments of [11]. The NTK Θ(x, x′) given
two input vectors x and x′ is defined as the Jacobian of the NN
outputs with respect to the network parameters θ, evaluated at
the initial parameters, and then taking their inner product (see
Eq.1).

Θ(x, x′) =
∑
i,j

∂fi(x)

∂θj

∂fi(x
′)

∂θj
, (1)

Note that fi(x) is the ith output of the neural network for
input x, and θj is the jth parameter of the network.

We consider four different kernel transformations in this
paper. First, the GP posterior covariance after observing the
training data Xtrain for a given base kernel k with the
corresponding feature map ϕ which is defined in Eq.2.

k→post(Xtrain,σ2)(x, x
′) =

σ2ϕ(x)T (ϕ(X T
trainϕ(Xtrain) + σ2I)−1ϕ(x′)) (2)

Note that σ2 is the variance of the observation noise in the
underlying model.

Second, we use the scaling transformation where we employ
a scaling factor λ ∈ R to form the scaled kernel λ2k with the
feature map λϕ. This is particularly important when using a
GP with λ2k as its covariance function, as it quantifies the
covariance between f(x) and f(x̃) based on the prior over
functions f .

k→scale(Xtrain)(x, x
′) = λ2k(x, x′) (3)

The third transformation is sketching, employed to approx-
imate a high-dimensional kernel k with a lower-dimensional
one for computational efficiency. We refer to Holzmüller et
al. [11] for details.

Finally, we utilize two kernel transformations corresponding
to two different ways of applying the ACS-FW method from
Pinsler et al. [19] applied to GP regression. Thereby, we use
acs-rf (kernel of Bayesian batch active learning as sparse
subset approximation with p random features) and acs-rf-hyper
(kernel of Bayesian batch active learning as sparse subset
approximation with p random features and hyperprior on σ2).
We refer to Pinsler et al. for details of this method, and
Holzmüller et al. [11] for details of the kernel transformation
applied to GP regression.

Algorithm 4 Iterative Selection Algorithm Template with
Customizable Function NextSample

Require: k,Xtrain,Xpool,Xbatch,mode ∈ {P,TP}
Ensure: Xbatch

1: function SELECT (k,Xtrain,Xpool,Xbatch,mode ∈
{P,TP})

2: Xbatch ← ∅
3: if mode = TP then
4: Xmode ← Xtrain
5: else
6: Xmode ← ∅
7: end if
8: for i = 1 to Nbatch do
9: Xsel ← Xmode ∪ Xbatch {Currently ”selected” points}

10: Xrem ← Xpool \ Xbatch {Currently unselected points}
11: Xbatch ← Xbatch ∪ {NextSample(k,Xsel,Xrem)}
12: end for
13: return Xbatch
14: end function

Selection Methods: We will now discuss a variety of
kernel-based selection methods to be used for querying in
active learning. Algorithm 4 shows the details of the selection
method SELECT that was manipulated in Algorithm 3. To
favour samples with high informativeness in an iterative active
learning scheme that tries to enforce the diversity of the
selected batch, two approaches can be used according to [11]:

• (P) Informativeness can be incorporated through the
kernel. For example, k → Xtrain(x, x) represents the
posterior variance at x of a GP

• (TP) Informativeness can be incorporated implicitly by
enforcing diversity of Xtrain ∪ Xbatch instead of only
enforcing diversity of Xbatch. In other words, a batch
that is sufficiently different from the training set typically
necessarily contains new information.

This explains the usage of mode parameter in SELECT in
Algorithm 4 for different selection methods. It is worth
mentioning that we use the same setting that was used in
the experiments by Holzmüller et al. [11]. Algorithm 4 serves
as a generalized mechanism for constructing sample batches.

It takes as input a kernel k, the current training set Xtrain, a
pool of potential samples Xpool, an initially empty batch Xbatch,
and a mode parameter which can either be P or TP . The
algorithm starts by initializing an empty set Xbatch which will
be incrementally populated with samples. Depending on the
selected mode (P or TP), the algorithm initializes another set
Xmode either as an empty set or as equivalent to the current
training set Xtrain. Then it loops for Nbatch iterations, where
in each iteration, the set of currently “selected” samples,
denoted by Xsel, is updated to be the union of Xmode and
Xbatch. Additionally, the remaining samples Xrem are updated
to consist of those samples in the pool Xpool which have not
yet been added to Xbatch. The selection method (denoted by
NextSample in the algorithm) then selects a new sample
from the remaining set Xrem, based on the kernel k and the
set of currently selected samples Xsel. This new sample is
added to Xbatch. After Nbatch iterations, the algorithm returns
the selected batch Xbatch.

Table I shows the selection methods investigated in our
experiments and the corresponding kernels and kernels trans-
formation used. Note that many of the selection methods
correspond to existing methods in the active learning literature,
some of which were originally formulated for classification.
Holzmüller et al. [11] formulate each of these selection
methods under one common framework and adapt them to
regression if needed. For simplicity, we use similar (but
shortened) formulations, but we refer to [11] for details of
each method.

• Random Selection. This corresponds to sampling a data
point uniformly at random from the points in the pool
Xrem. The selection method is shown in Eq.4.

NextSample(K,Xsel,Xrem) ∼ U(Xrem), (4)

where U(Xrem) is the uniform distribution over Xrem.
For this method both P and TP are equivalent.

• MAXDIAG. This corresponds to Eq.5. It is shown in
[11] that this is equivalent to BALD [12] in a regression
setting.

NextSample(K,Xsel,Xrem) = argmaxx∈Xrem
K(x, x)

(5)
According to Eq.5, MAXDIAG selects the maximum of
the elements on the diagonal of the posterior covariance
matrix. For this method both P and TP are equivalent.

• MAXDET. This corresponds to Eq.6. It is shown in [11]
that this is equivalent to BatchBALD [16] in the regres-
sion setting. This only holds under certain conditions, see
[11] for details.

NextSample(K,Xsel,Xrem) =

argmaxx∈Xrem
det(k(Xsel ∪ {x},Xsel ∪ {x}) + σ2I) (6)

MAXDET. This is considered an improvement over MAX-
DIAG because it takes Xsel into account by conditioning
the GP on Xsel when computing the posterior covariance.

• BAIT. This corresponds to the selection method intro-
duced by Ash et al. [3]. BAIT potentially improves on
the previous selection methods by also considering how
well the selected batch represents the current pool set. It
is shown in [11] that the original formulation from [3] is
equivalent to Eq.7.

NextSample(K,Xsel,Xrem) =

argminx∈Xrem
Σx′∈Xtrain∪Xpool

k →post (Xsel ∪ x, σ2)(x′, x′)
(7)

Note that [3] introduces two versions of BAIT: forward
and forward/backward. Eq.7 corresponds to the forward
version of BAIT, which we use in our experiments due
to superior performance.

• FRANKWOLFE. This method approximates the kernel
mean embedding using a Frank-Wolfe optimization al-
gorithm. To ensure that Xbatch accurately represents the
pool set, Pinsler et al. [19] recommend constructing Xbatch
in a manner that closely approximates Σx∈Xpoolϕ(x) by
Σx∈Xbatchwxϕ(x), where wx’s are non-negative weights.
Specifically, they advocate the use of the Frank-Wolfe
optimization algorithm to solve the related optimization
problem, enabling an iterative selection of elements into
Xbatch. This method aims to approximate the distribution
of Xpool through Xbatch by mimicking the empirical kernel
mean embedding N−1

poolΣx∈Xpoolk(x, .) using Xbatch. The
strategy can be executed in either the kernel or feature
space. Due to the quadratic scaling with Npool in the
kernel space, Pinsler et al. [19] opt for the feature space
approach when handling large pool sets, a choice we
also adopt in our experiments. Unlike the original method
which allows for repeated selection of the same x ∈ Xpool,
we disallow this to ensure batch sizes remain consistent
for a fair comparison with other techniques.

• MAXDIST. This corresponds to greedily selecting data
points that maximize the distance to those already se-
lected. The selection method is shown in Eq.8.

NextSample(k,Xsel,Xrem) =

argmaxx∈Xrem
minx′∈Xseldk(x,x′) (8)

This method is equivalent to Coreset [25] for a particular
configuration of the kernel (see [11] for details).

• KMEANSPP. This is defined in Eq.9 and is related to
BADGE [4] (see [11] for details).

NextSample(k,Xsel,Xrem) =

minx′∈Xsel
dk(x, x

′)2

Σx′∈Xremminx∈Xsel
dk(x, x′)2

(9)

Much like MaxDet, MaxDist ensures both Informative-
ness and Diversity but falls short on Representativity.
To address this, one can consider batch selection as
a clustering problem. In Eq.9, the optimization task
essentially reformulates the k-medoids problem, blending

the k-means clustering objective with the stipulation that
cluster centroids must be selected from the clustered
dataset.

• LCMD. As a deterministic counterpart to the stochastic
k-meansPP method, Holzmüller et al. [11] introduce a
method known as LCMD (Largest Cluster Maximum Dis-
tance). This selection method considers representativity
by restricting selections to the largest cluster, while also
promoting diversity by selecting the data point that is fur-
thest away within that cluster. In this context, x′ ∈ Xsel

denotes cluster centroids, c(x) signifies the associated
center for each x ∈ Xrem, and S(x′) represents the size
of the cluster. According to Eq.10, the data point with
the greatest distance from the largest cluster is selected.

NextSample(K,Xsel,Xrem) =

argmaxx∈Xrem:s(c(x))=maxx′∈Xsel
s(x′)dK(x, c(x)) (10)

c(x) = argminx′∈Xsel
dk(x, x

′)

s(x′) = Σx∈Xrem:c(x)=x′dk(x, x
′)2

TABLE I: An overview of the used kernel and kernel trans-
formation for each selection method

Selection Method Kernel Kernel Transformation Mode
BAIT

sketch → scale → post
PMAXDIST

MAXDET
KNEANSPP

sketch → acs-rf
P

MAXDIAG -
FRANKWOLFE NTK

sketch → acs-rf-hyper
P

LCMD
sketch

TP

Random - - -

IV. EXPERIMENT

A. Collection of Data

To bolster the dependability of our experiments, two distinct
real-world datasets consisting of performance metrics are
utilized. The first, called OSSBuild, consists of actual build
data acquired from the continuous integration frameworks
of four distinct open-source projects. The second, termed
HadoopTests, is a more expansive dataset that we gathered
ourselves by running the Hadoop open-source system’s unit
tests in a well-regulated setting. A summarization of both
datasets can be found in Table II. Further details about each
dataset are elaborated in the subsequent subsections.

1) OSSBuild Dataset: Initially employed in the work of
Samoaa et al. [24], this dataset includes data related to test
run times in the build systems of four open-source softwares:
systemDS, H2, Dubbo, and RDF4J. All of these projects make
use of public continuous integration platforms and provide
publicly available build details, which we used to gather data
on test execution times in the summer of 2021. Refer to

TABLE II: Overview of the OSSBuilds and HadoopTests
datasets.

Proj. Desc. Files Runs Nodes Vocab.

O
SS

sysDS Apache ML
for Data
Science
lifecycle

127 1321 114904 3205

H2 Java SQL DB 194 1391 432375 18326
Dubbo Apache

Remote
Procedure
Call
framework

123 524 77142 4505

RDF4J Scalable RDF 478 1055 242673 10844
Tot. 922 4291 867094 36880

H
ad

oo
p Hadoop Apache

framework
for big data

2895 24348 5090798138952

Table II (top) for essential statistics about these projects. The
term ”Files” refers to the unit test files we monitored for
execution durations, while ”Runs” signifies the aggregated
execution count for these files. ”Nodes” and ”Vocabulary Size”
denote the graphs. Prior to parsing, we exclude code comments
to minimize the graph nodes. We observe 867094 nodes and
36880 vocabulary entries.

2) HadoopTests Dataset: In order to address the limitations
of the OSSBuild dataset, particularly the confined file counts
per project, a second dataset was generated. We selected
the Apache Hadoop project due to its extensive collection
of test files (2895) with adequate complexity. We executed
all of the unit tests in the project five times and recorded
each test file’s execution time, as reported by the JUnit
framework. We utilized a dedicated virtual machine equipped
with two virtualized CPUs and 8 GBytes of RAM for this data
collection, and non-essential services were disabled to ensure
consistent performance. Statistics for the HadoopTests dataset
are outlined in Table II (bottom). The dataset has an enlarged
node count with 5090798 nodes and 138952 vocabulary terms.

B. Experiment Setting

To systematically investigate different combinations of ker-
nels, kernel transformations, and selection methods as outlined
in Table 1, we subject our datasets to these various selection
techniques. For the HadoopTests dataset, the initial training
size, denoted by Ntrain, is set at 256, while for OssBuilds,
it is 88. We then proceed to obtain 16 batches, each having
a size of Nbatch equalling 128 for HadoopTests and 45 for
OssBuilds, applying the corresponding BMAL method. This
entire process is repeated 10 times, each time with unique
initialization seeds for the neural network (NN) and different
partitions of the data into training, pool, and test subsets.
The evaluation metric we consider is the root mean squared
error (RMSE) calculated on the test dataset after each BMAL
iteration. The logarithm of the RMSE error metric is then

averaged over 10 repetitions and, depending on the specific
experiment, over 16 steps for each dataset and embedding.

The GNN model is configured with three layers of Graph-
Cov layers. In contrast, for the NN model, we employ a
fully connected architecture consisting of three layers, each
having 512 neurons in both of the hidden layers. The activation
function chosen for both networks is ‘relu’. The training of
both GNN and NN is executed using the Adam optimizer,
spanning 256 epochs with a batch size of 32. The embedding
dimension in the supervised and unsupervised settings is 90.

C. Experimental Results
In this section, we will present the average RMSE values.

The mean log RMSE for each embedding is illustrated in
different subfigures. We assess the performance of the con-
figurations outlined in Table I.

a) BMDAL for HadoopTests: Figure 6 illustrates the
performance of various selection methods in the context of
HadoopTests. It breaks down the results by depicting the
average log RMSE in both supervised and unsupervised em-
beddings. In unsupervised embedding, shown in Figure 6a,
Random selection consistently underperforms relative to other
methods. MAXDIST stands out as the most effective, partic-
ularly as the labelled data grow. Moving to the supervised
embedding results in Figure 6b, the Random selection method
still performs the poorest, while BAIT and MAXDET con-
sistently outperform the rest across various training set sizes.
Interestingly, the typical best-performing methods (BAIT and
MAXDET) do not maintain their lead when the size of the
labelled data is restricted to around 256 samples. In this
specific context, MAXDIST is the most effective method.
Overall, the results demonstrate the effectiveness of active
learning, i.e., the benefits of non-random selection methods,
especially MAXDIST.

b) BMDAL for OssBuilds: The evaluations for Oss-
Builds reveal a noticeably higher variance in each selection
method for OSSBuilds compared to the HadoopTest dataset.
This increased variability is likely due to having fewer samples
of OSSBuilds, which comprises graphs from four distinct
projects.

In the unsupervised embedding setting, as indicated by
Figure 7a, both Random and FRANKWOLFE methods gen-
erally underperform. Intriguingly, LCMD exhibits a sudden
and significant improvement, becoming the best-performing
method when the training batch size reaches approximately
256. However, this performance gain is ephemeral, as its
RMSE error escalates once again beyond this point.

Despite Random being the least effective method in super-
vised settings as in Figure 7b, certain variations appear at
smaller training set sizes. Specifically, in the first 64 labelled
training samples, FRANKWOLFE underperforms most no-
tably. For the same training sample size, MAXDIST emerges
as the best performer, consistent with the HadoopTest dataset.

D. Further Discussions
In this section, we discuss further the results from various

perspectives.

128 256 512 1024 2048
Training set size Ntrain

−1.90

−1.85

−1.80

−1.75

−1.70

−1.65

m
ea

n
lo

g
R

M
SE

RANDOM

MAXDIAG

MAXDET-P
BAIT-F-P
FRANKWOLFE-P
MAXDIST-P
KMEANSPP-P
LCMD-TP

(a) Unsupervised using Graph2Vec

128 256 512 1024 2048
Training set size Ntrain

−2.4

−2.2

−2.0

−1.8

−1.6

−1.4

−1.2

−1.0

m
ea

n
lo

g
R

M
SE

RANDOM

MAXDIAG

MAXDET-P
BAIT-F-P
FRANKWOLFE-P
MAXDIST-P
KMEANSPP-P
LCMD-TP

(b) Supervised using GNN

Fig. 6: Root mean square error for BMDAL in both embedding settings on HadooptTests.

45 64 128 256 512 922
Training set size Ntrain

−1.75

−1.70

−1.65

−1.60

−1.55

−1.50

m
ea

n
lo

g
R

M
SE

RANDOM

MAXDIAG

MAXDET-P
BAIT-F-P
FRANKWOLFE-P
MAXDIST-P
KMEANSPP-P
LCMD-TP

(a) Unsupervised using Graph2Vec

45 64 128 256 512 922
Training set size Ntrain

−1.6

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

m
ea

n
lo

g
R

M
SE

RANDOM

MAXDIAG

MAXDET-P
BAIT-F-P
FRANKWOLFE-P
MAXDIST-P
KMEANSPP-P
LCMD-TP

(b) Supervised using GNN

Fig. 7: Root mean square error for BMDAL in both embedding settings on OssBuilds.

• Observations on data variability: Our results indicate
smoother and less variable performance for HadoopTests
compared to OssBuilds. This difference is primarily due
to the source of the graphs. While Hadoop’s graphs
originate from a single project, OssBuilds features graphs
from various domain projects (as detailed in Table II).
Additionally, the larger number of graphs in Hadoop
contributes to this stability.

• Performance w.r.t. embedding types: Upon examining
the mean log RMSE values, it is clear that supervised
embeddings offer the most effective setting for the se-
lection methods. This is evidenced by the lower mean
log RMSE and higher delta (mean log RMSE) — 1.4 for
HadoopTests and 1 for OssBuilds—compared to 0.25 for
unsupervised embedding. However, caution is warranted
in generalizing these findings, as they may require valida-
tion with more diverse graph data from various projects.

• Computational considerations: It is worth noting that
the supervised setting comes with increased computa-
tional demands. This is because each active learning
iteration involves not only training an NN based on the
embeddings but also training the GNN to obtain those
embeddings.

• Graph characteristics and implications: Our analysis
performed on graph data in our previous study [22] (Table
2) reveals that the graphs in our study are characterized
by high diameter and sparsity, adding complexity to the
task. Furthermore, these graphs are augmented versions
of Abstract Syntax Trees (ASTs).

• Comparison with previous work: Interestingly, our
current findings diverge from our previous paper where
batch and kernel components were not utilized. This
highlights the crucial role both the active learning and
the quality of embeddings play in influencing the results.

V. CONCLUSION

In this study, we employed Batch Mode Deep Active Learn-
ing (BMDAL) for graph data within a regression framework.
The algorithm integrates kernels and kernel transformations
with active learning selection methods. Specifically, the Neural
Tangent Kernel (NTK) serves as the base kernel, while the
Gaussian Process (GP) posterior variance is primarily uti-
lized for kernel transformation. Supervised and unsupervised
embedding are investigated to adapt the graph data to this
framework. Our experimental results indicate that supervised
embedding provides the most effective setting for selection
methods. While identifying a universally optimal selection
method across different experimental settings proved chal-
lenging, MAXDET and MAXDIST consistently emerged as
top performers. Conversely, the Random method, used as a
baseline, consistently ranked as the least effective, indicating
the advantage of active learning for data labelling.

ACKNOWLEDGMENT

This work received financial support from the Swedish
Research Council VR under grant number 2018-04127. The
work of Linus Aronsson was partially supported by the
Wallenberg AI, Autonomous Systems and Software Program
(WASP) funded by Knut and Alice Wallenberg Foundations.

REFERENCES

[1] Batch Mode Deep Active Learning for Regression on Graph Data.
Zenodo, Sept. 2023. https://doi.org/10.5281/zenodo.8352242.

[2] R. Abel and Y. Louzoun. Regional based query in graph active learning,
2019.

[3] J. Ash, S. Goel, A. Krishnamurthy, and S. Kakade. Gone fishing: Neural
active learning with fisher embeddings. In M. Ranzato, A. Beygelzimer,
Y. Dauphin, P. Liang, and J. W. Vaughan, editors, Advances in Neural
Information Processing Systems, volume 34, pages 8927–8939. Curran
Associates, Inc., 2021.

[4] J. T. Ash, C. Zhang, A. Krishnamurthy, J. Langford, and A. Agarwal.
Deep batch active learning by diverse, uncertain gradient lower bounds,
2020.

[5] J. D. Bossér, E. Sörstadius, and M. H. Chehreghani. Model-centric and
data-centric aspects of active learning for deep neural networks. In 2021
IEEE International Conference on Big Data (Big Data), pages 5053–
5062, 2021.

[6] H. Cai, V. W. Zheng, and K. C.-C. Chang. Active learning for graph
embedding, 2017.

[7] X. Chen, G. Yu, J. Wang, C. Domeniconi, Z. Li, and X. Zhang.
Activehne: Active heterogeneous network embedding. In Proceedings
of the Twenty-Eighth International Joint Conference on Artificial Intel-
ligence, IJCAI-19, pages 2123–2129. International Joint Conferences on
Artificial Intelligence Organization, 7 2019.

[8] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional
neural networks on graphs with fast localized spectral filtering. In
D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 29. Curran
Associates, Inc., 2016.

[9] Y. Gal, R. Islam, and Z. Ghahramani. Deep bayesian active learning
with image data. In D. Precup and Y. W. Teh, editors, Proceedings of
the 34th International Conference on Machine Learning, volume 70 of
Proceedings of Machine Learning Research, pages 1183–1192. PMLR,
06–11 Aug 2017.

[10] L. Gao, H. Yang, C. Zhou, J. Wu, S. Pan, and Y. Hu. Active discrim-
inative network representation learning. In Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intelligence, IJCAI-
18, pages 2142–2148. International Joint Conferences on Artificial
Intelligence Organization, 7 2018.

[11] D. Holzmüller, V. Zaverkin, J. Kästner, and I. Steinwart. A framework
and benchmark for deep batch active learning for regression. Journal
of Machine Learning Research, 24(164):1–81, 2023.

[12] N. Houlsby, F. Huszár, Z. Ghahramani, and M. Lengyel. Bayesian active
learning for classification and preference learning, 2011.

[13] S. Hu, Z. Xiong, M. Qu, X. Yuan, M.-A. Côté, Z. Liu, and J. Tang.
Graph policy network for transferable active learning on graphs, 2020.

[14] A. Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Convergence
and generalization in neural networks. In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018.

[15] S. Jarl, L. Aronsson, S. Rahrovani, and M. H. Chehreghani. Active
learning of driving scenario trajectories. Engineering Applications of
Artificial Intelligence, 113:104972, 2022.

[16] A. Kirsch, J. van Amersfoort, and Y. Gal. Batchbald: Efficient and di-
verse batch acquisition for deep bayesian active learning. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019.

[17] X. Li, Y. Wu, V. Rakesh, Y. Lin, H. Yang, and F. Wang. Smartquery:
An active learning framework for graph neural networks through hybrid
uncertainty reduction. In Proceedings of the 31st ACM International
Conference on Information; Knowledge Management, CIKM ’22, page
4199–4203, New York, NY, USA, 2022. Association for Computing
Machinery.

[18] A. Narayanan, M. Chandramohan, R. Venkatesan, L. Chen, Y. Liu, and
S. Jaiswal. graph2vec: Learning distributed representations of graphs,
2017.

[19] R. Pinsler, J. Gordon, E. Nalisnick, and J. M. Hernández-Lobato.
Bayesian batch active learning as sparse subset approximation. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019.

[20] C. E. Rasmussen and C. K. I. Williams. Gaussian processes for machine
learning. Adaptive computation and machine learning. MIT Press, 2006.

[21] P. Ren, Y. Xiao, X. Chang, P.-Y. Huang, Z. Li, B. B. Gupta, X. Chen,
and X. Wang. A survey of deep active learning, 2021.

[22] P. Samoaa, L. Aronsson, A. Longa, P. Leitner, and M. H. Chehreghani.
A unified active learning framework for annotating graph data with
application to software source code performance prediction, 2023.

[23] P. Samoaa, F. Bayram, P. Salza, and P. Leitner. A systematic mapping
study of source code representation for deep learning in software
engineering. IET Software, 16(4):351–385, 2022.

[24] P. Samoaa, A. Longa, M. Mohamad, M. H. Chehreghani, and P. Leitner.
Tep-gnn: Accurate execution time prediction of functional tests using
graph neural networks. In D. Taibi, M. Kuhrmann, T. Mikkonen,
J. Klünder, and P. Abrahamsson, editors, Product-Focused Software Pro-
cess Improvement, pages 464–479, Cham, 2022. Springer International
Publishing.

[25] O. Sener and S. Savarese. Active learning for convolutional neural
networks: A core-set approach. In International Conference on Learning
Representations, 2018.

[26] B. Settles. Active learning literature survey. Computer Sciences
Technical Report 1648, University of Wisconsin–Madison, 2009.

[27] Y. Shen, H. Yun, Z. C. Lipton, Y. Kronrod, and A. Anandkumar. Deep
active learning for named entity recognition, 2018.

[28] S. Viet Johansson, H. Gummesson Svensson, E. Bjerrum, A. Schliep,
M. Haghir Chehreghani, C. Tyrchan, and O. Engkvist. Using active
learning to develop machine learning models for reaction yield predic-
tion. Molecular Informatics, 41(12):2200043, 2022.

[29] D. Wu. Pool-based sequential active learning for regression. IEEE
Transactions on Neural Networks and Learning Systems, 30(5):1348–
1359, 2019.

[30] Y. Wu, Y. Xu, A. Singh, Y. Yang, and A. Dubrawski. Active learning
for graph neural networks via node feature propagation, 2019.

[31] Y. Zhang, H. Tong, Y. Xia, Y. Zhu, Y. Chi, and L. Ying. Batch active
learning with graph neural networks via multi-agent deep reinforcement
learning. Proceedings of the AAAI Conference on Artificial Intelligence,
36(8):9118–9126, Jun. 2022.

[32] Y. Zhang, Y. Xia, Y. Zhu, Y. Chi, L. Ying, and H. Tong. Active
heterogeneous graph neural networks with per-step meta-q-learning. In
2022 IEEE International Conference on Data Mining (ICDM), pages
1329–1334, 2022.

